
Designing Secure Systems on Reconfigurable Hardware

Ted Huffmire
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943
tdhuffmi@nps.edu

Brett Brotherton
Special Technologies Laboratory
Santa Barbara, CA 93111
brett.brotherton@gmail.com

Nick Callegari, Jonathan Valamehr, and Jeff White
Department of Electrical and Computer Engineering
University of California, Santa Barbara
Santa Barbara, CA 93106
{nick callegari,valamehr}@ece.ucsb.edu, jdwhite08@engineering.ucsb.edu

Ryan Kastner
Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093
kastner@ucsd.edu

Tim Sherwood
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
sherwood@cs.ucsb.edu

Abstract

The extremely high cost of custom ASIC fabrication makes FPGAs an attractive alternative for deployment of custom
hardware. Embedded systems based on reconfigurable hardware integrate many functions onto a single device. Since em-
bedded designers often have no choice but to use soft IP cores obtained from third parties, the cores operate at different
trust levels, resulting in mixed trust designs. The goal of this project is to evaluate recently proposed security primitives for
reconfigurable hardware by building a real embedded system with several cores on a single FPGA and implementing these
primitives on the system. Overcoming the practical problems of integrating multiple cores together with security mechanisms
will help us to develop realistic security policy specifications that drive enforcement mechanisms on embedded systems.

Categories and Subject Descriptors: B.3.2 [MEMORY STRUCTURES]: Design Styles—Virtual Memory; B.7.1 [IN-
TEGRATED CIRCUITS]: Types and Design Styles—Gate Arrays; B.7.2 [INTEGRATED CIRCUITS]: Design Aids—
Placement and Routing; C.1.3 [PROCESSOR ARCHITECTURES]: Other Architecture Styles—Adaptable Architectures;
D.4.7 [OPERATING SYSTEMS]: Organization and Design—Real-Time Systems and Embedded Systems; K.6.5 [MAN-
AGEMENT OF COMPUTING AND INFORMATION SYSTEMS]: Security and Protection—Authentication
General Terms: Design, Security

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Designing Secure Systems on Reconfigurable Hardware

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Computer
Science,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
ACM Transactions on Design Automation of Electronic Systems (TODAES), Vol. 13, No. 3, July 2008, 1-24

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Additional Key Words and Phrases: Field Programmable Gate Arrays (FPGAs), Advanced Encryption Standard (AES),
Memory Protection, Separation, Isolation, Controlled Sharing, Hardware Security, Reference Monitors, Execution Monitors,
Enforcement Mechanisms, Security Policies, Static Analysis, Security Primitives, Systems-on-a-Chip (SoCs)

1 Introduction

Reconfigurable hardware, such as a Field Programmable Gate Array (FPGA), provides an attractive alternative to costly
custom ASIC fabrication for deploying custom hardware. While ASIC fabrication requires very high non-recurring engi-
neering (NRE) costs, an SRAM-based FPGA can be programmed after fabrication to be virtually any circuit. Moreover, the
configuration can be updated an infinite number of times.

Because they are able to provide a useful balance between performance, cost, and flexibility, many critical embedded
systems make use of FPGAs as their primary source of computation. For example, the aerospace industry relies on FPGAs
to control everything from the Joint Strike Fighter to the Mars Rover. We are now seeing an explosion of reconfigurable
hardware based designs in everything from face recognition systems [Ngo et al. 2005], to wireless networks [Salefski and
Caglar 2001], to intrusion detection systems [Hutchings et al. 2002], to supercomputers [Bondhugula et al. 2006]. In fact it
is estimated that in 2005 alone there were over 80,000 different commercial FPGA designs projects started [McGrath 2005].

Since major IC manufacturers outsource most of their operations to a variety of countries [Milanowski and Maurer 2006],
the theft of IP from a foundry is a serious concern. FPGAs provide a viable solution to this problem, since the sensitive IP is
not loaded onto the device until after it has been manufactured and delivered. This makes it harder for the adversary to target
a specific application or user. In addition, device attacks are difficult on an FPGA since the intellectual property is lost when
the device is powered off. Modern FPGAs use bitstream encryption and other methods to protect the intellectual property
once it is loaded onto the FPGA or an external memory.

Although FPGAs are currently fielded in critical applications that are part of the national infrastructure, the development
of security primitives for FPGAs is just beginning. Reconfigurable systems are often composed of several modules (called
IP cores) on a single device. Since cost pressures necessitate object reuse, a typical embedded system will incorporate soft
IP cores that have been developed by third parties. Just as software designers must rely on third-party classes, libraries,
and compilers, hardware designers must also cope with the reality of using third-party cores and design tools. This issue
will grow in importance since organizations increasingly rely on incorporating commercial off-the-shelf (COTS) hardware
or software into critical projects.

The goal of this paper is to examine the practicality of recently proposed security primitives for reconfigurable hardware
[Huffmire et al. 2006] [Huffmire et al. 2007] by applying them to an embedded system consisting of multiple cores on a
single FPGA. Through our Red-Black design example we attempt to better understand how the application of these security
primitives impacts design, in terms of both complexity and performance, of a real system. Integrating several cores together
with reconfigurable protection primitives enables the effective implementation of realistic security policies on practical em-
bedded systems. We begin with a description of work related to reconfigurable security (Section 2), and then explain the
underlying theory of separation in reconfigurable devices in Section 3. We then present our design example, a red-black
system, and we discuss how to secure this design through the application of moats, drawbridges, and reference monitors in
Section 4.

2 Related Work

While there is a large body of work relating to reconfigurable devices and their application to security, we can broadly
classify the work related to securing reconfigurable designs into three broad categories: IP Theft Prevention, Isolation and
Protection, and Covert Channels.

2.1 IP Theft

Most of the work relating to FPGA security targets the problem of preventing the theft of intellectual property and securely
uploading bitstreams in the field, which is orthogonal to our work. Since such theft directly impacts their bottom line, industry
has already developed several techniques to combat the theft of FPGA IP, such as encryption [Bossuet et al. 2004] [Kean 2001]
[Kean 2002], fingerprinting [Lach et al. 1999a], and watermarking [Lach et al. 1999b]. However, establishing a root of trust
on a fielded device is challenging because it requires a decryption key to be incorporated into the finished product. Some

FPGAs can be remotely updated in the field, and industry has devised secure hardware update channels that use authentication
mechanisms to prevent a subverted bitstream from being uploaded [Harper et al. 2003] [Harper and Athanas 2004]. These
techniques were developed to prevent an attacker from uploading a malicious design that causes unintended functionality.
Even worse, the malicious design could physically destroy the FPGA by causing the device to short-circuit [Hadzic et al.
1999].

2.2 Isolation and Protection

Besides our previous work [Huffmire et al. 2006] [Huffmire et al. 2007], there is very little other work on the specifics
of managing FPGA resources in a secure manner. Chien and Byun have perhaps the closest work, where they addressed the
safety and protection concerns of enhancing a CMOS processor with reconfigurable logic [Chien and Byun 1999]. Their
design achieves process isolation by providing a reconfigurable virtual machine to each process, and their architecture uses
hardwired Translation Look-aside Buffers (TLBs) to check all memory accesses. Our work could be used in conjunction
with theirs, using soft-processor cores on top of commercial off-the-shelf FPGAs rather than a custom silicon platform. In
fact, we believe one of the strong points of our work is that it may provide a viable implementation path to those that require
a custom secure architecture, for example execute-only memory [Lie et al. 2000] or virtual secure co-processing [Lee et al.
2005].

A similar concept to moats and drawbridges is discussed in [McLean and Moore 2007]. Though they do not provide great
details about much of their work, they use a similar technique to isolate regions of the chip by placing a buffer between them
which they call a fence. Gogniat et al. propose a method of embedded system design that implements security primitives
such as AES encryption on an FPGA, which is one component of a secure embedded system containing memory, I/O, CPU,
and other ASIC components [Gogniat et al. 2006]. Their Security Primitive Controller (SPC), which is separate from the
FPGA, can dynamically modify these primitives at runtime in response to the detection of abnormal activity (attacks). In this
work, the reconfigurable nature of the FPGA is used to adapt a crypto core to situational concerns, although the concentration
is on how to use an FPGA to help efficiently thwart system level attacks rather than chip-level concerns. Indeed, FPGAs are
a natural platform for performing many cryptographic functions because of the large number of bit-level operations that are
required in modern block ciphers. However, while there is a great deal of work centered around exploiting FPGAs to speed
cryptographic or intrusion detection primitives, systems researchers are just now starting to realize the security ramifications
of building systems around hardware which is reconfigurable.

2.3 Memory Protection on an FPGA

On a modern FPGA the memory is essentially flat and unprotected by hardware mechanisms. because reconfigurable
architectures on the market today support a simple linear addressing of the physical memory. On a general-purpose processor,
interaction via shared memory can be controlled through the use of page table and associated TLB attributes. While a TLB
may be used to speed up page table accesses, this requires additional associative memory (not available on FPGAs) and
greatly decreases the performance of the system in the worst case. Therefore, few embedded processors and even fewer
reconfigurable devices support even this most basic method of protection. Use of Superpages, which are very large memory
pages, makes it possible for the TLB to have a lower miss rate [Navarro et al. 2002]. Segmented Memory [Saltzer 1974] and
Mondrian Memory Protection [Witchel et al. 2002], a finer-grained scheme, address the inefficiency of providing per-process
memory protection via global attributes by associating each process with distinct permissions on the same memory region.

2.4 Covert Channels, Direct Channels, and Trap Doors

Although moats provide physical isolation of cores, it is possible that cores could still communicate via a covert channel. In
a covert channel attack, classified information flows from a “high” core to a “low” core that should not access classified data.
Covert channels work via an internal shared resource, such as processor activity, disk usage, or error conditions [Percival
2005]. There are two types of covert channels: storage channels and timing channels. Classical covert channel analysis
involves the articulation of all shared resources on chip, identifying the share points, determining if the shared resource
is exploitable, determining the bandwidth of the covert channel, and determining whether remedial action can be taken
[Kemmerer 1983] [Millen 1987]. Storage channels can be mitigated by partitioning the resources, while timing channels can
be mitigated with sequential access. Examples of remedial action include decreasing the bandwidth (e.g., the introduction
of artificial spikes (noise) in resource usage [Saputra et al. 2003]) or closing the channel. Unfortunately, an adversary can
extract a signal from the noise, given sufficient resources [Millen 1987].

Reconfigurable Protection

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

app1

app2

app3

R
e

fe
re

n
c

e
M

o
n

ito
r

Separate Processors
gate

keeper
gate

keeper

D
R

A
M

gate
keeper

app1app3 app2

Separation Kernels

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

app1 app3app2

kernel

Physical Software

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Fig. 1. Alternative strategies for providing protection on embedded systems. From a security stand-
point, a system with multiple applications could allocate a dedicated physical device for each appli-
cation, but economic realities force designers to integrate multiple applications onto a single device.
Separation kernels use virtualization to prevent applications from interfering with each other, but
they come with the overhead of software and are therefore restricted to general-purpose processor
based systems. The goal of this project is to evaluate reconfigurable isolation and controlled sharing
mechanisms that provide separation for FPGA based embedded systems.

A slightly different type of attack is the side channel attack, such as a power analysis attack on a cryptographic system,
which can extract the keys used by a crypto core [Kocher et al. 1999] [Standaert et al. 2003]. Finally, there are overt channels
(a.k.a. trap doors or direct channels) [Thompson 1984]. An example of a direct channel is a system that lacks memory
protection: a core simply writes data to a chunk of memory, and another core reads it. Another example of a direct channel is
a tap that connects two cores. An unintentional tap is a direct channel that can be established due to implementation errors,
faulty design, or malicious intent. For example, the place-and-route tool’s optimization strategy may interleave the wires of
two cores. Although the chances of this are small, CAD tools are not perfect, and errors do occur. Much greater is the threat
of designer errors, incorrect implementation of the specification, and malicious code or logic. We leave to future work the
development of automated methods of detecting covert, side, and direct channels in embedded designs.

3 Moats, Drawbridges, and Reference Monitors

3.1 Motivation for Isolation and Separation

The concept of isolation is fundamental to computer security. Saltzer and Shroeder use diamonds as a metaphor for
sensitive data [Saltzer and Schroeder 1974]. To protect the diamonds, you must isolate them by placing them in a vault.
To access the diamonds, you must have a method of controlled sharing (a vault door with a combination lock). The term
separation describes the controlled sharing of isolated objects. In a system with a mandatory access control (MAC) policy,
objects may belong to different equivalence classes, such as Classified and Unclassified. Therefore, we must isolate the
various equivalence classes and control their interaction.

Isolation and separation are crucial to the design of military avionics, which are designed in a federated manner so that
a failure of one component (e.g., by the enemy’s bullet) is contained [Rushby 2000]. Since having a separate device for
each function incurs a high cost in terms of weight, power, cooling, and maintenance, multiple functions must be integrated
onto a single device without interfering with each other. Therefore, avionics were the drive behind the development of the
first separation kernels [Rushby 1984]. In military avionics systems, sensitive targeting data is processed on the same device
as unclassified maintenance data, and keeping processing elements that are “cleared” for different levels of data properly
separated is critical [Weissman 2003].

Separation and isolation are also fundamental to the design of cryptographic devices. In a red/black system, plaintext

carried over red wires must be segregated from ciphertext carried over black wires, and the NSA has established requirements
for the minimum distance and shielding between red and black circuits, components, equipment, and systems [National
Security Telecommunications and Information Systems Security Committee 1995]. We extend the red/black concept in this
paper to an embedded system-on-a-chip with a red domain and a black domain.

3.2 Mechanisms for Isolation and Separation

One option for providing separation in embedded systems is purely physical separation, shown in the left of Figure 1. With
physical separation, each application runs on its own dedicated device, and gate keepers provide a mechanism of controlled
interaction between applications. Requiring a separate device for each application is very expensive and therefore impractical
for embedded systems. In contrast to strictly physical protection, separation kernels [Rushby 1984] [Irvine et al. 2004] [Levin
et al. 2004] use software virtualization to prevent applications from interfering with each other. A separation kernel, shown
in the right of Figure 1, provides isolation of applications but also facilitates their controlled interaction. However, separation
kernels come with the overhead of software and can only run on general-purpose processors.

Reference Monitors: In our prior work, we proposed a third approach called reconfigurable protection [Huffmire et al.
2006], shown in the middle of Figure 1, that uses a reconfigurable reference monitor to enforce the legal sharing of memory
among cores. A memory access policy is expressed in a specialized language, and a compiler translates this policy directly
to a circuit that enforces the policy. The circuit is then loaded onto the FPGA along with the cores. The benefit of using
a language-based design flow is that a design change that affects the policy simply requires a modification to the policy
specification, from which a new reference monitor can be automatically generated.

Moats and Drawbridges: In our prior work [Huffmire et al. 2007], we proposed a spatial isolation mechanism called
moats and a controlled sharing mechanism called drawbridges as methods for ensuring separation on reconfigurable devices.
Moats exploit the spatial nature of computation on FPGAs to provide strong isolation of cores. A moat surrounds a core
with a channel in which routing is disabled. In addition to isolation of cores, moats can also be used to isolate the reference
monitor and provide tamper-resistance. Drawbridges allow signals to cross moats letting the cores communicate with the
outside world. Finally, a static analysis of the bitstream is used to ensure that only specified connections between cores can
be established. This analysis can also be used to ensure that the reference monitor cannot be bypassed and is always invoked.

4 An Application of Separation through Design

To test the practicality of moats, drawbridges, and reference monitors, we need to apply them to a real design. Our test
system is a red/black system running on a single FPGA device. As discussed in Section 3, the red and black components
must be separated. We will use two types of separation in our design: spatial separation using moats and drawbridges, and
temporal separation using a reference monitor. The combination of moats, drawbridges and a reference monitor allows us
to develop a more secure system that can run on a single device and make use of shared resources to conserve power, cost,
and area. Our design allows us to gain further knowledge about the ease of design and about performance in applying these
mechanisms to a real system.

4.1 Red-Black System: A Design Example

The system we designed is a multi-core system-on-a-chip which can be seen in Figure 3. There are two μBlaze processors
in the system: one belongs to the red domain, and the other belongs to the black domain. These processors communicate
with the memory and the various peripherals over a shared bus. A traditional shared bus is insecure because there is nothing
to prevent one processor from reading the other processor’s memory or accessing information from a peripheral that it is not
supposed to. To address this problem, the reference monitor was integrated into the on-chip peripheral bus (OPB), so that all
bus accesses by the two processors must be verified by the reference monitor.

The design consists of seven different “cores”: We have μBlaze0, μBlaze1, the OPB along with its arbiter and the
reference monitor, the AES core, the DDR SDRAM, the RS-232 interface, and the Ethernet interface. These components
share resources and interact with one another. The on-chip peripheral bus (OPB) was modified to create a custom OPB which
contains a reference monitor which must approve all memory accesses. Shared external memory (SDRAM), the AES Core,
the RS-232 interface, and the Ethernet interface are also connected to the bus as slave devices so access to these devices must
go through the reference monitor. Theses seven different cores are then physically partitioned using moats and drawbridges.

0000 1000 1110 0111 1011 0000 0001 10XX

0000 1000 1110 0111 1011 0000 0000 1XXX

AddressModuleID Op

,Illegal}

1

Parallel Search

2...

Range IDRange

N

...

0001 0101 1111 0000 0001 1010 1111 XXXX

Module ID Op Range ID Bit Vector
 Access Descriptor

DFA
Logic

Match?
0
1

0

(0x8E7B018)(rw)(2)

{0,1,0,...,0}

Enforcement Module

{Legal

init 1

0

{M1,w,R4}

{M3,z,R3}

{M1,rw,R1},
{M1,r,R3},
{M2,rw,R2},
{M3,rw,R3}

{M1,rw,R1},
{M1,r,R3},
{M2,rw,R2},
{M2,r,R3},
{M3,rw,R3}

Fig. 2. The inputs to the reference monitor are
the module ID, op, and address. The range ID
is determined by performing a parallel search
over all ranges, similar to a content address-
able memory (CAM). The module ID, op, and
range ID together form an access descrip-
tor, which is the input to the state machine
logic. The output is a single bit: either grant
or deny the access. Moats and drawbridges
ensure that the reference monitor is tamper-
proof and always invoked.

Ethernet

OPB w/ Reference Monitor

µBlaze1

To Network

µBlaze0

Authentication

Module

DDR
SDRAM

AESRS232

Fig. 3. System architecture. The system is di-
vided into two isolation domains to prevent
the mixing of data of different sensitivity lev-
els. The first domain (hatched pattern) con-
tains μBlaze0 and the local RS-232 interface,
which can be connected to an iris or finger-
print scanner. The second domain (white)
contains μBlaze1 and the Ethernet interface.
Both processors share the AES core and ex-
ternal memory, and the reference monitor en-
forces the sharing of these resources and the
isolation of the domains.

The integration of the reference monitor into the OPB allows for ease of system design. This custom OPB is available to
incorporate into any system using the Xilinx Platform Studio. The OPB is the bus which is most commonly used to connect
the peripherals together in a system, so adding a reference monitor to a new system design is as simple as “dragging and
dropping” the custom OPB into the design.

The AES core has a custom designed controller that allows it to be controlled through shared memory. When a processor
wants to encrypt or decrypt data, the processor places that data in the shared memory and writes several control words to
indicate to the AES core what operation to perform, where the data is located, and how much data there is. When the AES
core is done performing the requested operation, it signals the processor, and the processor can then retrieve the data from
the shared memory buffer. The shared memory buffer allows the AES core to work like a co-processor, freeing up the regular
processor to perform other tasks while encryption/decryption is being performed.

In order to allow both processors to use the AES core, access to it is strictly regulated by our stateful security policy in the
reference monitor. The shared memory buffer is divided into two parts, one for each processor. This keeps each processor’s
data separate and prevents one processor from reading data that has been decrypted by the other processor, but this does not
solve the problem of regulating access to the core. Access to the core is controlled by restricting access to the control words,
and this will be discussed in further detail in the following sections.

All these components form our red/black system, which has two isolation domains. The red domain shown in Figure 3
by the hatched pattern consists of its own region of memory in the SDRAM and AES Core, the RS232 interface along with
the authentication module, and μBlaze0. We currently have a Secugen Fingerprint reader; however, other authentication
methods such as retinal scanning or voice recognition could also be used. The second isolation domain (the black domain)
is shown with no pattern in Figure 3 and consists of its own region of memory in the SDRAM and AES Core, the Ethernet

interface, and μBlaze1. Since the Ethernet can be connected to the much less secure Internet, it is isolated from the red part
of the system, which handles the sensitive and authentication data. This separation is achieved through the use of moats,
drawbridges and a reference monitor.

4.2 A Reference Monitor

Commonly implemented in software, a reference monitor is used to control access to data or devices in a system. In
our system, the reference monitor is implemented in hardware and used to regulate access to the memory and peripherals.
When a core makes a request to access memory, the reference monitor (RM) makes a decision to either allow the access or
deny it. The RM can provide protection for any device connected to the OPB. For example, a MicroBlaze CPU and an AES
encryption core can share a block of BRAM. The CPU encrypts plaintext by copying the plaintext to the BRAM and then
signaling to the AES core via a control word. The AES core retrieves the plaintext from the BRAM and encrypts the plaintext
using a symmetric key. After encrypting the plaintext, the AES core places the ciphertext into the BRAM and then signals to
the CPU via another control word. Finally, the CPU retrieves the ciphertext from the BRAM. A similar process is used for
decryption. A simple memory access policy can be constructed with two states: one state that gives the CPU exclusive access
to the shared control buffer and another state that gives the AES core exclusive access to the control buffer. The transitions
between these two states occur when the cores signal to the reference monitor via by performing a write to a reserved address.
We extend upon this idea to construct a policy, which will be applied to our red/black system, that consists of three states for
a system with two CPU cores, a shared AES core, and shared external memory.

Typically the different cores are connected to the memory and peripherals through a shared bus. This bus (OPB) can
connect the CPU, external DRAM, RS232 (serial port), general-purpose I/O (to access the external pins), shared BRAM, and
DMA. To prevent two cores from utilizing the bus at the same time, an arbiter sits between the modules and the bus. The
reference monitor can be placed between the bus and the memory, or the reference monitor can snoop on the bus. Our goal
is to make sure that our memory protection primitive achieves efficient memory system performance. This will also be an
opportunity to design meaningful policies for systems that employ a shared bus.

4.2.1 A Hardware Implementation. Figure 2 shows the hardware decision module we wish to build. An access de-
scriptor specifies the allowed accesses between a module and a range. Each DFA transition represents an access descriptor,
consisting of a module ID, an op, and a range ID bit vector. The range ID bit vector contains a bit for each possible range,
and the descriptor’s range is indicated by the (one) bit that is set.

A memory access request consists of three inputs: the module ID, the op {read, write, etc.}, and the address. The output
is a single bit: 1 for grant and 0 for deny. First, the hardware converts the memory access address to a bit vector. To do
this, it checks all the ranges in parallel and sets the bit corresponding to the range ID that contains the input address (if any).
Then, the memory access request is processed through the DFA. If an access descriptor matches the access request, the DFA
transitions to the accept state and outputs a 1.

By means of the reference monitor, the system is divided into two systems which are isolated yet share resources. The
first system consists of μBlaze0, the DDR SDRAM, and the RS-232 device. The second system consists of μBlaze1, the
DDR SDRAM, and the Ethernet device. Everything is interconnected with the OPB (Onboard Peripheral Bus), which is the
glue for the systems, and both systems make use of the AES core as well.

These two different systems save on power and area by sharing resources (the bus and the AES core); however, this can
be a problem if we want to isolate the two systems. The Ethernet interface could be connected to the Internet, which has a
lower security level than the RS-232 interface, which is a local connection. We want to prevent the mixing of data of different
security levels. First, we assign a processor to each communication interface. Using the OPB that is provided with EDK
allows for both processors to share the peripherals but is very insecure since they would have unregulated access to all regions
of memory and all peripherals on the bus. Also, there is the issue of arbitrating access and preventing the mixing of data of
different sensitivity levels in the shared AES core.

The reference monitor, which is integrated into the OPB, addresses these problems. Since we are using memory mapped
I/O, the reference monitor allows us to control access to the two I/O devices and to split the shared DDR SDRAM into two
isolated blocks, one for each processor. In this way we restrict access so that each processor can access only the I/O device
which it is intended to use. Access to the AES core is arbitrated by having multiple states in our memory access policy. Our
system can regulate access to any of the slave devices on the bus with little overhead. Furthermore, the system can easily be
scaled to add more masters, and the policy implemented by the reference monitor can easily be modified.

RS232 EthernetDRAM1 DRAM2

C
n
tr

l_
W

o
rd

A
E

S

C
n
tr

l_
W

o
rd

1

C
n
tr

l_
W

o
rd

2

AES1 AES2

OPB

Fig. 4. This diagram shows how the different memory mapped I/O devices and memory is divided up
into regions by the reference monitor.

4.2.2 A Security Policy Design Example. While the reference monitor cannot be bypassed and can control access to all
peripherals, it is useless without a good security policy. Our system makes use of a simple stateful policy to control access
to the peripherals and to allow the sharing of the AES core. We will describe this policy and how it is transformed into a
hardware reference monitor that can easily be added to any design.

The designer expresses the access policy in our specialized language. The access policy consists of three states: one
state for the case in which μBlaze0 (or Module1) has access to the AES Core, one state for the case where μBlaze1 (or
Module2) has access to the AES Core, and one state for the case where neither has access to the AES Core. A processor
obtains access to the AES core by writing to a specific control word (Control Word 1), and a processor relinquishes access to
the AES core by writing to another specific control word (Control Word 2). Therefore, the transitions between states occur
when one of the processors writes to one of these specified control words.

In addition to permitting temporal sharing of the AES Core, the policy isolates the two MicroBlaze processors such that
Processor1 and RS-232 data is in a separate isolation domain as Processor2 and Ethernet data. Since each component of
our system is assigned a specific address range, our reference monitor is well-suited for enforcing a resource sharing policy.
We specify the policy for our system as follows. The first part of the policy specifies the ranges (a graphical depiction of the
ranges can be seen in figure 4:

Range1 → [0x28000010,0x28000777]; (AES1)
Range2 → [0x28000800,0x28000fff]; (AES2)
Range3 → [0x24000000,0x24777777]; (DRAM1)
Range4 → [0x24800000,0x24ffffff]; (DRAM2)
Range5 → [0x40600000,0x4060ffff]; (RS-232)
Range6 → [0x40c00000,0x40c0ffff]; (Ethernet)
Range7 → [0x28000004,0x28000007]; (Ctrl Word1)
Range8 → [0x28000008,0x2800000f]; (Ctrl Word2)
Range9 → [0x28000000,0x28000003]; (Ctrl WordAES)

The second part of the policy specifies the different access modes, one for each state:

Access0 → {Module1,rw,Range5}
| {Module2,rw,Range6}
| {Module1,rw,Range3}
| {Module2,rw,Range4}
Access1 → Access0

| {Module1,rw,Range1}
| {Module1,rw,Range9};

Access2 → Access0

| {Module2,rw,Range2}
| {Module2,rw,Range9};

The third part of the policy specifies the transitions between the states:

Trigger1 → {Module1,w,Range7};
Trigger2 → {Module1,w,Range8};
Trigger3 → {Module2,w,Range7};
Trigger4 → {Module2,w,Range8};

The final part of the policy uses regular expressions to specify the structure of the policy’s state machine:

Expr1 → Access0 | Trigger3 Access2* Trigger4;
Expr2 → Access1 | Trigger2 Expr1* Trigger1;
Expr3 → Expr1* Trigger1 Expr2*;
Policy → Expr1* | Expr1* Trigger3 Access2*

| Expr3 Trigger2 Expr1* Trigger3 Access2*
| Expr3 Trigger2 Expr1* | Expr3 | ε;

Since some designers may be uncomfortable with complex regular expressions, in Section 5.3, we describe our efforts to
increase the usability of our scheme by developing a higher-level language in which access policies can be expressed in terms
of more abstract concepts such as isolation and controlled sharing.

Figure 5 shows a system level view of the policy. From this policy, our policy compiler automatically generates a hardware
description in Verilog of a reference monitor.

To further understand this security policy we will go through a simple example. The system starts out in Access0, mean-
ing neither processor can write to the AES Core. Then if μBlaze0 needs to use the AES core, it first writes to cntrl word1,
which triggers the reference monitor to transition to Access1. Now that the reference monitor is in Access1, the two pro-
cessors can still access their peripherals and memory regions as they could in Access0, except that μBlaze0 can now access
cntrl wordAES as well as AES1. This allows μBlaze0 to place data into its portion of the shared AES core memory and
write the control words of the AES core thus performing and encrypt/decrypt operation on the data. When the operation is
done and μBlaze0 has finished, it performs a write to cntrl word2 thus relinquishing control of the AES Core and transfer-
ring the reference monitor back to Access0. Similarly μBlaze1 can do the same thing to obtain use of the AES Core. If one
core tries to use or gain control of the AES core while it is being used by the other core, the reference monitor will simply
deny access.

Ensuring that the reference monitor cannot be bypassed is essential to the security of the system since it regulates access to
all the peripherals. The hardware must be verified to make sure that the reference monitor can in no way be tampered with or
bypassed. Moats and drawbridges address this problem by allowing us to partition the system and then verify the connectivity
of the various components in the system. For example, our tracing technique can detect an illegal connection between a core
and memory that bypasses the reference monitor, an illegal connection between two cores, or an illegal connection that allows
a core to snoop on the memory traffic of another core. In addition, the reference monitor itself can be isolated using a moat,
which increases the reference monitor’s resistance to tampering.

4.2.3 Policy Compiler. To understand how the access policy is converted to a reference monitor, we provide a condensed
description of our policy compiler here. [Huffmire et al. 2006] provides a full description of our policy compiler. Figure 6
shows the reference monitor design flow for a simple toy policy with one state. First, the access policy is converted to a regular
expression by building and transforming a parse tree. Next, the regular expression is converted to a NFA using Thompson’s
algorithm. Then, the NFA is converted to a DFA using subset construction, and Hopcroft’s minimization algorithm is used to
produce a minimized DFA. The minimized DFA is then converted into a hardware description in Verilog HDL of a reference
monitor that enforces the policy.

4.2.4 Scalability. In our design example, the system is protected by a single reference monitor. For larger, more complex
systems, it may be necessary to have multiple reference monitors to ensure scalbility. Reference monitors that enforce
stateless policies, which have only one state, can simply be copied, since they can operate independently. However, for
stateful policies, which have more than one state, there is some communication overhead required so that all of the reference
monitors share the same state. To reduce this overhead, system designers can make design decisions that minimize the amount
of state that must be shared among all the reference monitors.

AES

OPB w/ Reference Monitor

µBlaze1

OPB w/ Reference Monitor

µBlaze1

AES

OPB w/ Reference Monitor

µBlaze1

Trigger3
(µBlaze1 writes

ctrl_word1)

Access1

Access0

Access2

Trigger1
(µBlaze0 writes
ctrl_word1)

Trigger2

(µBlaze0 writes
ctrl_word2)

Trigger4
(µBlaze1 writes
ctrl_word2)

µBlaze0 µBlaze0

µBlaze0

RS232 DDR
SRAM

Ethernet

RS232 RS232DDR
SRAM

DDR
SRAMEthernet EthernetAES

Fig. 5. This system level diagram shows the three states of the reference monitor and what devices
are in each isolation domain. The first domain is represented by the hatched pattern, and the second
domain is represented by white background with no pattern. The SRAM is shared between the two
and is therefore represented with half of each pattern in it.

4.2.5 Covert Channels. There are several options for preventing a covert channel between the red and black domains.
First, the AES core can be wiped between uses, and we describe a scrubbing technique in [Huffmire et al. 2007] that exploits
partial reconfiguration. To prevent a timing channel in which the red domain grabs and releases the AES core frequently
(behavior that can be observed by the black domain), one way of limiting the bandwidth is to require that the AES core
be used for a minimum amount of time. Another option is a statically scheduled sharing scheme in which each domain is
allowed to use the AES core during a fixed interval. Another option is the introduction of noise. Yet another option is to use
counters to measure how many times the AES core is grabbed and released by the red domain, taking corrective action if
this activity exceeds a predetermined threshold. We are also developing methods to prevent the internal state of the reference
monitor from being used as a covert storage channel, including a policy checker that looks for cycles in the DFA that enforces
the policy that indicate a possible covert channel, language features that prevent these cycles, dummy states that break up the
cycles, only allowing a trusted module to change the state of the policy, and system level techniques.

4.3 Moats and Drawbridges

Moats and drawbridges are a method of providing spatial separation of cores on the chip. As previously discussed, spatial
separation provides isolation, which provides increased security and fault tolerance. Moats are a buffer zone of unused CLBs
which are placed around cores to provide physical isolation. Their main purpose is to provide isolation and to enable the
verification of this isolation. The size of the moat can be varied depending on the application and is measured as the number
of CLBs that are used as a buffer between cores. There is even the concept of a virtual moat (a moat of size 0), which occurs
when the cores are placed right next to each other. Although they are touching and have no buffer zone around them, static

Access

->

OR

{M1,rw,R1} {M2,rw,R2}

AND

->

Policy

OR

{M1,rw,R1} {M2,rw,R2}

*

Access

->

OR

{M1,rw,R1} {M2,rw,R2}

AND

->

Policy

Access *

init

0
{M1,rw,R1},

{M2,rw,R2}

ε

8

7

5

1 3

2 4

6

ε

ε

ε

ε

ε

ε

ε

{M1,rw,R1} {M2,rw,R2}

Access->{Module1,rw,Range1}

Policy->(Access)*;

1. Policy 2. Build Parse Tree 3. Transform Parse Tree

5. NFA

6. DFA

case({module_id,op,r1,r2})

 9'b000011110: //M1,rw,R1

 state = s0;

 9'b000101101: //M2,rw,R2

 state = s0;

 default:

 state = s1; // reject

endcase

7. Verilog

8. Reference Monitor

Memory

Interface

Module 1

Module 2
Refererence

Monitor

({Module1,rw,Range1}

4. Regular Expression

| {Module2,rw,Range2};

| {Module2,rw,Range2})*

Fig. 6. Reference monitor design flow for a toy policy. Our policy compiler first coverts the access
policy to a regular expression, from which an NFA is contructed. Then, the NFA is converted to a
minimized DFA, from which a hardware description of a reference monitor that enforces the policy is
constructed.

analysis ensures that they are still isolated and placed in their own region. While this allows for lower area overhead, it
requires greater verification effort.

Physically separating or partitioning the cores using moats and drawbridges provides increased security and fault tolerance
as discussed in Section 3. Physical separation is especially important if one or more of the cores was developed by a third party
designer (i.e., a COTS IP Core). The third party core may have a lower trust level than the other cores, resulting in a system
with cores of varying trust levels. Physically separating the cores allows for isolation of the domains of trust. Communication
with cores in a different domain of trust can go through a gatekeeper or reference monitor (as discussed above). This can
all be verified using our verification technique. In addition to security, physical separation provides an additional layer of
fault tolerance. If the cores are physically separated, it becomes more difficult for an invalid connection to be established
between them. If the cores are intertwined and a bit is flipped by something such as an single event upset (SEU) there is
a chance that an invalid connection could be established between two cores. However, with the cores physically separated
this chance is greatly reduced. In systems composed of cores of varying security levels, moats allow us to verify that only
specified information flows are possible between cores. Moats prevent unintended information flows due to implementation
errors, faulty design, or malicious intent.

Moats not only let us achieve physical separation, they also ease the process of verifying it. With moats and drawbridges,
it is possible to analyze the information flow between cores and to ensure that the intended flow cannot be bypassed and
is correctly implemented in hardware. The verification process would be very difficult if not impossible without them.
Verification takes place at the bitstream level. Since this is the last stage of design, there are no other design tools or steps
that could introduce an error into the design. In a design without moats, the cores are intertwined, and trying to verify such
a design at the bitstream level is a hard problem because of the difficulty of determining where one core starts and another
begins. Since modern FPGA devices have the capacity to hold designs with millions of gates, reverse engineering such a
design is very complex. With the cores placed in moats, the task of verification becomes much simpler, and the physical
isolation is stronger as well.

Metric W/O RM With RM

OPB LUTs 158 208

System LUTs 9881 9997

OPB Max Clk(MHz) 300.86 300.86

System Max Clk(MHz) 73.52 65.10

Cycles/Bus Access 25.76 26.76

Table I. This table shows the area and performance effects of the reference monitor on the system.
Effects are shown on the synthesis of just the OPB and the synthesis of the entire system. This table
also shows the average number of cycles per bus access with and without the reference monitor.

4.3.1 Constructing Moats. The construction of moats is a fairly simple process. First, the design is partitioned into
isolation domains. This step is highly design dependent. Once the design is partitioned, we can construct the moats using
the Xilinx PlanAhead [Xilinx Inc. 2006] software. PlanAhead allows the designer to constrain cores to a certain area on the
chip. The moats are “constructed” by placing the cores in certain regions on the chip. The remaining space not occupied
by the cores effectively becomes the moat. The size of the moat changes based on the spacing between cores. PlanAhead
then creates a user constraints file which can be used to synthesize the design with the cores constrained to a certain area of
the chip. Although the cores are constrained, the performance is not adversely affected. The tool simply confines the cores
to a certain region, and the place and route tool can still choose an optimal layout within that region. One factor affecting
performance is the drawbridges, which carry signals between cores. Since the cores are separated by a moat, a slightly longer
delay may occur than if the cores were placed without a moat. However, this effect can be minimized if the drawbridge
signals are properly buffered and if the cores are placed carefully.

Ensuring that a design is prepared to be partitioned using moats and drawbridges is very simple, and most designs should
be ready with absolutely no modification. As long as the “cores” or isolation domains are separated into different design files
(netlist or HDL) during the design phase, then the addition of moats using plan ahead is trivial. We divided our test system
into seven different “cores”: μBlaze0, μBlaze1, OPB with integrated reference monitor, Ethernet, RS232, DDR SDRAM,
and AES Core. Since these were all separate cores added in XPS, the process of implementing the moats was as simple as
selecting the core and then selecting a region for it on the chip in PlanAhead.

The separation of the design into seven different cores may seem unnecessary since our design consists only of two
isolation domains. However, since the cores all communicate through OPB and since the security of the system relies on
the reference monitor, this is a necessary step. It allows us to verify that all cores go through the reference monitor and that
there are no illegal connections between two cores. Doing this with only two isolation domains is not possible. It is also
desirable to partition cores of different trust levels, since our design uses a mix of third party IP cores and custom designed
cores, resulting in different levels of trust. We can partition the third party cores such as the Ethernet, RS232, and μBlaze
processors away from our custom OPB, and AES core, which have a higher level of trust. After you know what cores to
partition, the only thing left is the act of laying out the partitions on the chip.

The decision of where to place the cores and moats can involve some trial and error. We experimented with several
different layouts before choosing the final one. Achieving a good layout is critical to the performance of the design. The
key factors to achieving a good layout are placing the cores close to the I/O pins which they use and placing cores which
are connected close to each other. The moats were constructed for several different sizes so that the effect of moat size on
performance could be observed. The size of the moat also affects the amount of verification effort that is required, the details
of which are beyond the scope of this paper.

5 Design Flow and Evaluation

The goal of this project was to analyze our secure design methods and determine the feasibility of implementing them in a
real design. There are several main factors that determine how practical the methods are. The two that we are concerned with
are ease of design and the performance effect on the design. Our techniques have shown to be efficient and designer friendly.

5.1 Reference Monitor Implementation and Results

The actual implementation of the system was accomplished using Xilinx Platform Studio (XPS) software. The system
was assembled using the graphical user interface in XPS; this entails separately loading the different components of our

Average
Min
Max

 12

 12.5

 13

 13.5

 14

 14.5

 15

6210No_Moat

Pe
ri

od
 (

ns
)

Moat Size

Moat Size vs Minimum Clock Period

Fig. 7. This graph shows the relationship be-
tween moat size and the minimum clock pe-
riod (performance) for the design. Perfor-
mance is not greatly affected, with a maxi-
mum increase in clock speed of only 1.81% for
a moat size of 6.

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

6210No_Moat

N
um

be
r o

f C
LB

s

Moat Size

Moat Size vs Number of CLBs Used

Fig. 8. This graph shows the relationship be-
tween the number of CLBs used by the de-
sign and the moat size. Since no logic can
be placed in the moat, the number of CLBs
required increases with moat size. The area
impact for larger moats can be quite signifi-
cant.

design into XPS, defining the interface between them, and specifying the device into which the design is to be loaded. The
reference monitor was generated by the policy compiler described in Section 4.2.3. Integration of the reference monitor was
accomplished by modifying the Onboard Peripheral Bus (OPB) that came with the XPS software to create a custom OPB.
Testing of the custom OPB as well as the other cores was performed through Modelsim simulations by specifying an array
of inputs and verifying their respective outputs as correct. Once this was complete, the various components and the system’s
connectivity were synthesized to a hardware netlist and loaded into our FPGA.

The performance and area overhead of the design was analyzed with and without a reference monitor, and the results can
be seen in Table I. The number of bus cycles was calculated by counting the number of cycles it took to perform 10,000
memory accesses to the DDR SRAM and then dividing by 10,000 to get the average cycles per access. The overhead due to
our reference monitor was very small in terms of area and had little effect on performance.

The next step was the design of the software to run on the two μBlaze processors. The software was also developed and
compiled using the XPS software. Testing and debugging of the software was done by downloading and running the software
on the development board using the Xilinx Microprocessor Debugger (XMD). Software was also developed on the PC to
allow sending/receiving of files to/from the board over RS-232 and Ethernet.

5.2 Moat Implementation and Results

The last stage in the design process was partitioning the design into moats. This is done by using the Xilinx PlanAhead
software, which allows us to partition the chip into separate areas containing the cores as shown in Figure 9. The moats are
highlighted in Figure 9 as well, as the shaded areas surrounding each component. The design was then placed and routed
using ten iterations in the multipass place and route for each different moat size and with no moats at all. Using multipass
place and route allowed us to find the best layout on the chip and to compare the trade-offs of each chip layout generated.

Security is very important, but its cost must be managed; therefore, moats are only feasible if they do not have a significant
impact on performance. The performance and area overhead of the system with various moat sizes was compared to the
performance without moats. Figure 7 shows the performance effect of the moats, while Figure 8 shows the area overhead
due to the moats. For a moat size of 0, there was no effect on performance, and there was so effect on area either, since there
is no wasted moat area. A moat size of six would clearly consume more area since the moat occupies the unused CLBs. For
this design, the extra overhead for the moat is over 1,000 CLBs or 28% of the total chip. Performance overhead generally
increases with moat size, but the impact is still very small with a max decrease of less than 2%. Adding moats and a reference
monitor to our system enhances the security with an almost negligible impact on performance and area. With a moat size of
0 there is no impact on the area either.

AES EthernetDebug

OPB RS232

µBlaze0 µBlaze1

Fig. 9. This figure shows the floor plan view of our design in PlanAhead. The shaded areas between
the cores are the moats.

5.3 Ease of Design

The cost of adding security is just as important as adding the security itself. No matter how many security advantages
they provide, complex techniques will not be adopted unless they can easily be applied to a design. Although it cannot
be quantified or tested, after evaluating our methods we believe that using moats, drawbridges, and reference monitors is
effective and relatively simple.

Moats and drawbridges are very simple to add to a design because they are simply a form of floorplanning and can be
implemented quickly and easily. While it may take a little bit of work to get the right floorplan in order to achieve maximum
performance, an experienced designer should have no trouble with this. The reference monitor is also very easy to add to
a design. Since the reference monitor was integrated into the OPB, it is trivial to add it to any design using an on chip
bus. Futhermore, the designer does not have to worry about the low-level details of the reference monitor. The designer
specifies the access policy in our laguage, and our policy compiler automatically generates the neccessary Verilog files for
the reference monitor. We are developing a higher-level language for expressing access policies so that the designer does not
have to be an expert with regular expressions. For example, this higher-level language allows designers to express access
policies in terms of abstract concepts such as isolation and controlled sharing. We are also developing a compiler to translate
the policy from this higher level language.

6 Conclusions and Future Work

Addressing the problem of security on reconfigurable hardware design is very important because reconfigurable devices
are used in a wide variety of critical applications. We have built an embedded system for the purpose of evaluating security
primitives for reconfigurable hardware. We have developed a stateful security policy that divides the resources in the system
into two isolation domains. A reference monitor enforces the isolation of these domains but also permits the controlled
sharing of the encryption core. A spatial isolation technique called moats further isolates the domains, and a static analysis
technique called drawbridges facilitates the controlled interaction of isolated components. Together, moats and drawbridges
are a separation technique that also help ensure that the reference monitor is tamperproof and cannot be bypassed. Our results
show that these security primitives do not significantly impact the performance or area of the system.

We see many possibilities for future work. The DMA (direct memory access) controller introduces a new security chal-
lenge because of its ability to independently copy blocks of memory. The development of a secure DMA controller with an
integrated reference monitor requires understanding tradeoffs between security and performance. In addition, memory access
policies may need to be constructed differently for systems that use a DMA controller. For example, the request to the DMA

could include the requesting module’s ID.
We leave to future work the problem of denial-of-service because the primary focus of this paper is data protection.

Although there is no overhead of denying a request, a subverted core could launch a denial-of-service attack against the
system by repeatedly making an illegal request.

The state of computer security is grim, as increased spending on security has not resulted in fewer attacks. Embedded
devices are vulnerable because few embedded designers even bother to think about security, and many people incorrectly
assume that embedded systems are secure. A holistic approach to system security is needed, and new security technologies
must move from the lab into widespread use by industry, which is often reluctant to embrace them. Fortunately, the repro-
grammable nature of FPGAs allows security primitives to be incorporated into designs immediately. In order to be adopted
by embedded designers, who are typically not security experts, security primitives need to be usable and understandable
to those outside the security discipline. They must also be easy to use and have little performance impact. The primitives
implemented in this paper have shown to have very low performance and area overhead, and they would be rather easy to
integrate into a design.

Acknowledgments

We wish to thank the anonymous reviewers for their comments. This research was funded in part by National Science
Foundation Grant CNS-0524771 and NSF Career Grant CCF-0448654.

REFERENCES

BONDHUGULA, U., DEVULAPALLI, A., FERNANDO, J., WYCKOFF, P., AND SADAYAPPAN, P. 2006. Parallel FPGA-based all-pairs shortest-paths in a
directed graph. In Proceedings of the 20th IEEE International Parallel and Distributed Processing Symposium (IPDPS’06).

BOSSUET, L., GOGNIAT, G., AND BURLESON, W. 2004. Dynamically configurable security for SRAM FPGA bitstreams. In Proceedings of the 18th
International Parallel and Distributed Processing Symposium (IPDPS ’04). Santa Fe, NM.

CHIEN, A. AND BYUN, J. 1999. Safe and protected execution for the Morph/AMRM reconfigurable processor. In Seventh Annual IEEE Symposium on
Field-Programmable Custom Computing Machines. Napa, CA.

GOGNIAT, G., WOLF, T., AND BURLESON, W. 2006. Reconfigurable security support for embedded systems. In Proceedings of the 39th Hawaii
International Conference on System Sciences.

HADZIC, I., UDANI, S., AND SMITH, J. 1999. FPGA viruses. In Proceedings of the Ninth International Workshop on Field-Programmable Logic and
Applications (FPL ’99). Glasgow, UK.

HARPER, S. AND ATHANAS, P. 2004. A security policy based upon hardware encryption. In Proceedings of the 37th Hawaii International Conference on
System Sciences.

HARPER, S., FONG, R., AND ATHANAS, P. 2003. A versatile framework for FPGA field updates: An application of partial self-reconfiguration. In
Proceedings of the 14th IEEE International Workshop on Rapid System Prototyping.

HUFFMIRE, T., BROTHERTON, B., WANG, G., SHERWOOD, T., KASTNER, R., LEVIN, T., NGUYEN, T., AND IRVINE, C. 2007. Moats and drawbridges:
An isolation primitive for reconfigurable hardware based systems. In Proceedings of the 2007 IEEE Symposium on Security and Privacy. Oakland, CA,
USA.

HUFFMIRE, T., PRASAD, S., SHERWOOD, T., AND KASTNER, R. 2006. Policy-driven memory protection for reconfigurable systems. In Proceedings of
the European Symposium on Research in Computer Security (ESORICS). Hamburg, Germany.

HUTCHINGS, B., FRANKLIN, R., AND CARVER, D. 2002. Assisting network intrusion detection with reconfigurable hardware. In Proceedings of the 10th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’02).

IRVINE, C., LEVIN, T., NGUYEN, T., AND DINOLT, G. 2004. The trusted computing exemplar project. In Proceedings of the 5th IEEE Systems, Man and
Cybernetics Information Assurance Workshop. West Point, NY, 109–115.

KEAN, T. 2001. Secure configuration of field programmable gate arrays. In Proceedings of the 11th International Conference on Field Programmable
Logic and Applications (FPL ’01). Belfast, UK.

KEAN, T. 2002. Cryptographic rights management of FPGA intellectual property cores. In Tenth ACM International Symposium on Field-Programmable
Gate Arrays (FPGA ’02). Monterey, CA.

KEMMERER, R. 1983. Shared resource matrix methodology: An approach to identifying storage and timing channels. In ACM Transactions on Computer
Systems.

KOCHER, P., JAFFE, J., AND JUN, B. 1999. Differential power analysis. Proceedings of the 19th Annual International Cryptology Conference.

LACH, J., MANGIONE-SMITH, W., AND POTKONJAK, M. 1999a. FPGA fingerprinting techniques for protecting intellectual property. In Proceedings of
the 1999 IEEE Custom Integrated Circuits Conference. San Diego, CA.

LACH, J., MANGIONE-SMITH, W., AND POTKONJAK, M. 1999b. Robust FPGA intellectual property protection through multiple small watermarks. In
Proceedings of the 36th ACM/IEEE Conference on Design Automation (DAC ’99). New Orleans, LA.

LEE, R. B., KWAN, P. C. S., MCGREGOR, J. P., DWOSKIN, J., AND WANG, Z. 2005. Architecture for protecting critical secrets in microprocessors. In
Proceedings of the 32nd International Symposium on Computer Architecture (ISCA 2005). 2–13.

LEVIN, T. E., IRVINE, C. E., AND NGUYEN, T. D. 2004. A least privilege model for static separation kernels. Tech. Rep. NPS-CS-05-003, Naval
Postgraduate School.

LIE, D., THEKKATH, C., MITCHELL, M., LINCOLN, P., BONEH, D., MITCHELL, J., AND HOROWITZ, M. 2000. Architectural support for copy and
tamper resistant software. In Proceedings of the Ninth International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-IX). Cambridge, MA.

MCGRATH, D. 2005. Gartner dataquest analyst gives ASIC, FPGA markets clean bill of health. EE Times.
MCLEAN, M. AND MOORE, J. 2007. Securing fpgas for red/black systems, fpga-based single chip cryptographic solution. In Military Embedded Systems.
MILANOWSKI, R. AND MAURER, M. 2006. Outsourcing poses unique challenges for the u.s. military-electronics community. Chip Design Magazine.
MILLEN, J. 1987. Covert channel capacity. In Proceedings of the 1987 IEEE Symposium on Security and Privacy. Oakland, CA, USA.
NATIONAL SECURITY TELECOMMUNICATIONS AND INFORMATION SYSTEMS SECURITY COMMITTEE. 1995. NSTISSAM Tempest/2-95 Red/Black

Installation Guidance.
NAVARRO, J., IYER, S., DRUSCHEL, P., AND COX, A. 2002. Practical, transparent operating system support for superpages. In Fifth Symposium on

Operating Systems Design and Implementation (OSDI ’02). Boston, MA.
NGO, H., GOTTUMUKKAL, R., AND ASARI, V. 2005. A flexible and efficient hardware architecture for real-time face recognition based on Eigenface. In

Proceedings of the IEEE Computer Society Annual Symposium on VLSI.
PERCIVAL, C. 2005. Cache missing for fun and profit. In BSDCan 2005. Ottowa, Ontario, Canada.
RUSHBY, J. 1984. A trusted computing base for embedded systems. In Proceedings 7th DoD/NBS Computer Security Conference. 294–311.
RUSHBY, J. 2000. Partitioning in avionics architectures: Requirements, mechanisms, and assurance. In DOT/FAA/AR-99/58.
SALEFSKI, B. AND CAGLAR, L. 2001. Reconfigurable computing in wireless. In Proceedings of the Design Automation Conference (DAC).
SALTZER, J. 1974. Protection and the control of information sharing in Multics. Communications of the ACM 17, 7 (July), 388–402.
SALTZER, J. AND SCHROEDER, M. 1974. The protection on information in computer systems. Communications of the ACM 17, 7 (July).
SAPUTRA, H., VIJAYKRISHNAN, N., KANDEMIR, M., IRWIN, M., BROOKS, R., KIM, S., AND ZHANG, W. 2003. Masking the energy behavior of DES

encryption. In IEEE Design Automation and Test in Europe (DATE ’03).
STANDAERT, F., OLDENZEEL, L., SAMYDE, D., AND QUISQUATER, J. 2003. Power analysis of FPGAs: How practical is the attack? Field-Programmable

Logic and Applications 2778, 2003 (Sept.), 701–711.
THOMPSON, K. 1984. Reflections on trusting trust. Communications of the ACM 27, 8.
WEISSMAN, C. 2003. MLS-PCA: A high assurance security architecture for future avionics. In Proceedings of the Annual Computer Security Applications

Conference. Los Alamitos, CA, 2–12.
WITCHEL, E., CATES, J., AND ASANOVIC, K. 2002. Mondrian memory protection. In Tenth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-X). San Jose, CA.
XILINX INC. 2006. Planahead methodology guide. Xilinx Inc., San Jose, CA, USA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

